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Ahydrodynamic equation of motion for each component of a multicomponent 
fluid is derived on the basis of nonequilibrium thermodynamics. Special 
care has been directed to the choice of state variables. In some limiting cases, 
this equation leads to customary phenomenological equations, such as the 
equation for diffusion and the Navier-Stokes equation. The viscosity is a 
consequence of nonlocal coupling of forces and fluxes. The reciprocity 
between the linear coefficients is examined closely. 
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1. I N T R O D U C T I O N  

Though the thermodynamics of irreversible processes has been developed 
conspicuously,(z-r) there still remain unsatisfactory features when it is applied 
to continuous systems--namely deficiencies or redundancies exist at every 
step leading to phenomenological equations for irreversible processes. The 
present paper reveals and removes such unsatisfactory features. The system to 
be considered is isolated and composed of charged and neutral particles. 
Electrolyte solutions and high-temperature plasmas are typical examples of 
such systems. It is assumed that all components have a common temperature, 
and that no chemical reaction occurs. 
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Customary theories of irreversible processes in a continuous system are 
constructed as follows. On the basis of the first and second laws of thermo- 
dynamics, an expression for the entropy production is obtained in the form 
of a sum of several terms. Each term is regarded as a product of two 
quantities; one of the two is defined as the flux, and the other as the conjugate 
force. Linear relations, namely phenomenological equations, are assumed 
between the forces and the fluxes thus defined. Then, Onsager m reciprocity is 
applied to the phenomenological coefficients occurring in these equations. 

However, the above-mentioned forces and fluxes are generally different 
from those defined by Onsager; consequently, the corresponding phenomeno- 
logical coefficients do not necessarily obey (s) Onsager reciprocity. In the 
present paper, the forces and fluxes will be defined in connection with thermo- 
dynamical variables of state in order that the reciprocity between the linear 
coefficients may be clear. Most of previous work lacks due consideration of 
the variables which determine the state of the system. 

In particular, the internal energy per unit volume or per unit mass is 
selected customarily as one of such state variables. However, the internal 
energy is not a useful quantity for the purpose of obtaining phenomenological 
equations in continuous systems, because its time derivative is complicated 
and obscure. On the other hand, the total energy density makes a simple 
change because of the conservation law, as shown in the next section. A 
complete set of State variables is given in Section 3. 

The forces and fluxes are defined in Section 4. The linear relation between 
them is nonlocal: that is, the flux at a position of the system is related to the 
forces at other positions as well as at the same position. There is no reason 
to avoid this nonlocal relation, which is a kind of cross-phenomenon. In fact, 
the viscosity is a consequence of this nonlocal cross-effect. 

Section 5 treats the reciprocal relation between the linear coefficients 
occurring in the nonlocal phenomenological equations given in Section 4. 
The last section is devoted to transforming these nonlocal equations. A 
hydrodynamic equation of motion for the individual component is obtained 
instead of the customary equation for diffusion; the former includes the latter 
and the Navier-Stokes equation. 

2. T H E  FIRST L A W  OF T H E R M O D Y N A M I C S  

The isolated system under consideration is a multicomponent fluid; each 
component makes a mass motion, and may have electric charge. According 
to the principle of conservation of energy, the total energy content within 
an arbitrary volume in the system can change only if some energy flows into 
the volume considered through its boundary. The total energy includes all 
forms of energy in the system, such as the electrostatic potential energy, the 
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macroscopic kinetic energy of the mass motion of every component, and the 
internal energy. A local form of the first law of thermodynamics can be 
written as (Ref. 3, p. 17) 

~* ,= --div q* (1) 

where u* is the total energy per unit volume, the dot denotes partial differen- 
tiation with respect to time, and q* is the total energy flux per unit surface 
and unit time. 

The total energy flux q* consists of the "heat flux" q and the fluxes 
associated with the mass motions of the individual components: 

q* = q -+- ~ niviui* (2) 

where n~, v~, and ui* are the number density, the velocity of the mass 
motion, and the energy per particle, of the component i, respectively. The 
energy u~* per particle comprises the internal energy ui, the kinetic energy 
~m~v~l 2, and the electrostatic potential energy ei~: 

ui* =- ui q- �89 ~ q- eiq~ (3) 

where rn~ is the mass, el is the charge, and ~b is the electrostatic potential. It 
should be noted that the heat flux itself is not a physically observable quantity: 
Only its divergence has a physical meaning. Equation (1) together with 
Eq. (2) defines the observable part of the heat flux. 

If  conservative forces other than the electrostatic force are present, 
their potential energies should also be included in u~* and in u*. Noncon- 
servative forces, if any, merely convert the kinetic energy of mass motion into 
heat; such forces need not be taken into account explicitly. The presence of 
a stress tensor results in a momentum flux; a transfer of momentum always 
involves a transfer of energy (Ref. 7, p. 53). The energy flux due to the stress 
is customarily separated from the heat flux q, but such separation is 
unnecessary; instead, another heat flux will be defined in Section 4. 

3. E N T R O P Y  A N D  STATE VARIABLES 

The Gibbs equation for the continuous system can be expressed as 

du -~ T ds + ~ i~ dni (4) 

where u is the internal energy per unit volume, T is the absolute temperature 
common to all components, s is the entropy density, and/zl is the chemical 
potential of component i. The rate of change of the entropy density is thus 
given by 

8z2/Sh/Z-8* 
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upon which customary theories are based, the dotted quantities being the 
partial derivatives with respect to time. The expression for ~ is complicated, 
because the internal energy does not conserve; it is desired to express i in 
terms of ~*, namely the derivative of the total energy density discussed in 
the preceding section. 

Since the total energy includes the potential and kinetic energies in 
addition to the internal energy, the differential of the total energy density is 
given by 

= r ds § ~ tzi* dn~ + ~ nirn~vi" dvi (6) 

where/zi* has been defined by 

i~i * = i~i + e~q~ + lmivi~ (7) 

Therefore, the entropy density s may be regarded as a function of u*, n~, 
and v~; and its time derivative may be written as 

which is more tractable than (5). 
The macroscopic state of the system under consideration is determined 

by the total energy density u*, the particle number densitites n~, anJ  the 
flow velocities vi of the mass motions; therfore, these quantities make a 
complete set of state variables. Since the state variable in a continuum 
is a function of space coordinate and time, the entropy S of the whole system 
is a functional of these state variables, that is, a space integral of the entropy 
density s as a function of these variables. There is a choice in selecting a 
complete set of state variables. For  example, the internal energy density u 
can be substituted for the total energy density u*, although it yields compli- 
cation, as mentioned above. The flow velocities vi are often replaced by the 
velocity of the local center of mass; however, such replacement causes the 
set of state variables to be incomplete. 

The fluxes of irreversible processes are defined in the sense of Onsager as 
the time derivatives of the state variables: that is, 

~*, t~i, and +i (9) 

The conjugate forces are the functional derivatives of the entropy S with 
respect to the corresponding state variables: that is, 

1IT, --t~i*/T, and --nimivi/T (10) 
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Strictly speaking, it is the deviations of the quantities (9) and (10) from their 
equilibrium values that may be considered as the fluxes or the forces. Without 
regard to this definition, other forces and fluxes are defined in the next 
section for convenience of comparison with customary results. 

4. L INEAR R E L A T I O N  

Equation (8) for the entropy density can be transformed into the form 

i = --div(q'T -1 § ~ n~v~s 0 § q ' .  grad T -1 

- -  ~ nivi T - 1 .  [(grad f i i)r -1- rni(iz~ § vi " grad vi)] (11) 

Here, q' is a kind of heat flux defined by 

q' = q + ~ nivi(ui* - -  IX~ * --  Tsi) (12) 

s~ being the entropy per particle of the component i; 

f i i  =-- ~ i  $ - -  �89 ~ (13) 

(grad ~i)T ~ grad/2i -t- '-7i grad T (14) 

where fi~ is sometimes called the electrochemical potential, and use has been 
made of the energy equation (1) and the equation of continuity 

Ii i @ d i v  n i v  i ~ 0 (15) 

The difference between q' and q is related to the work associated with the 
volume increment produced by diffusion and convection of the various 
components (Ref. 5, p. 29). 

When all v~ in the square brackets on the right side of (1 l) are replaced 
by the velocity v of the local center of mass, the expression (11) is equivalent 
to that given by Kihara. (9) If the Navier-Stokes equation is further assumed, 
a customary expression for the entropy production will be obtained. However, 
such replacement cannot be permitted, because the entropy production is a 
second-order quantity with respect to the small deviations of the state 
variables from their equilibrium values: The difference between v~ and v has 
to be retained up to the second order. 

Since the system under consideration is isolated, the entropy S of the 
whole system takes its maximum value when there is equilibrium. In other 
words, the first derivatives o r s  with respect to the state variables vanish under 
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certain restrictions due to the laws of conservation of energy, particle number, 
and so on. As proved in the appendix, this extremum condition leads to 

grad T - +  0 (16a) 

vi--* Vo + to X (r -- ro), i% = Vo (16b) 

mi(% + vi �9 grad vi) + grad t2i + 0 (16c) 

q' -+ 0 (16d) 

Here, the arrow denotes that the left side reduces to the right at equilibrium; 
v o and to are respectively the linear and angular velocities of the system as a 
whole; and r o gives the center of mass of the system. 

Hereafter, the flame of reference is taken to translate and rotate with 
the system. The quantities appearing up to this point may be considered 
to be defined in this frame. In particular, the substantial derivative 
mi(+~ 4- v~ �9 grad vi) in the inertial frame is transformed into 

mi(;r 4- vi �9 grad vi) -- 2miv i  x to - -  rni(to x r) X to (17) 

where the subtrahends are the Coriolis and the centrifugal forces, respectively, 
r being the distance from the origin of the frame. 

The integration of (11) over the whole system gives the entropy 
production in the form 

( o.Xo- (18) 

Here, the "forces" are defined by 

Xo = grad T -1 (19a) 

X i  = niv i  T-1 (19b) 

and the "fluxes" by 

Jo = q' (20a) 

a~ = (grad/2i)T + 2mi to  X vi 4- mdiz i  4- vi " grad vi) (20b) 

where /2~ includes the centrifugal potential energy. Though the term 
vi " grad vi is small in the frame moving with the system, it may become 
large in other frames. The force could be defined a s - - X i  ; however, the 
present definition will simplify the reciprocity between linear coefficients. 

When the system is in thermal equilibrium, all the fluxes and forces 
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vanish. Therefore, the fluxes may be related to the forces by the linear 
equation 

J,(r~) = ~ f l:ffrl,  r~)" Xffr2) dr2, a = 0, i (21) 
O=O,i 

The flux at the position r 1 depends on the forces at a different position r2, 
which is a kind of cross-phenomenon. Since the linear coefficients vanish 
rapidly as the distance ] r ~ -  r~l increases, the relation (21) is usually 
approximated by the local relation 

= ~ [ f  '~b(rl, r2)dr2] �9 X~(rl) (22) J.(rl) 

Nevertheless, this approximation cannot apply to viscous fluids; a better 
approximation will be given in Section 6. 

5. RECIPROCITY BETWEEN L INEAR COEFFICIENTS 

The linear coefficients appearing in (21) obey the symmetric relation 

lba(r2 rl) (23) l~(rz , r2) = 

which is to be proved in this section, the Greek indices denoting the tensorial 
component. The direction of the angular velocity to of the system as a whole 
is considered to be reversed where necessary: The quantities on the left and 
the right sides are defined in the systems with to and with --co, respectively. 
The reciprocity (23) comprises the three relations 

l~(rl r~) rl) (23a) , = 8 (r2, 

a~ pa 
10i(r2 rl) (23b) /i0(rx , r~) = 

a8 l?c~ . loo(r2 rd /o0(rl, r~) = , (23c) 

where the suffixes i and j refer to substances, and 0 to heat. 
In order to prove the above reciprocity, several expressions should be 

mentioned. As a result of the fact that the equations of motion for individual 
particles are invariant under time inversion, the correlations between state 
variables and Onsager's fluxes (9) satisfy the relations (~,l~ 

(vi~(r0 ~)j~(r2)) ~- (vjB(r~) ~)i"(rl)) (24a) 

( u * ( r l )  ~ic~(r2) ) : - -( t ) i~(r2)/~*(r l)  ) (24b) 

(u*(ri) a*(r2)) = (u*(r2) 7i*(r~)) (24c) 

Here, the bracket notation means the statistical average, and the state 
variables are to be considered as the deviations from their equilibrium values. 
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The correlations between state variables and Onsager's forces (10) can be 
expressed as (l~ 

(vi~(rl) m~Xifl(r~)) = KSi~ 8~ 8(rl -- r2) (25a) 

(u*(rl)/T(r~)) = --KS(r1 -- r2) (25b) 

(vi~(rl)/~j*(r2)/T(r~)) = 0 (25c) 

(u*(rl)/~j*(r~)/T(r~)) = 0 (25d) 

(vi~(rl)/T(r2)) = 0 (25e) 

(u*(rl) miXi~(r~)) = 0 (25f) 

where • is the Boltzmann constant. 
First, it is to be proved that the correlations between the flow velocities 

and the fluxes given by (20b) satisfy the relation 

(mivi"(rx) J~(r2)) = (mjvj~(r2) Ji~(r:t)) (26) 

Since the flow velocities are small, their third-order terms are negligible. 
Equation (25c), therefore, reduces to 

(vi(rl) [grad/~j(r2)]r) = 0 (27) 

where (25e) has been used. Consequently, the relation (26) turns out to be 
the same as (24a). The substitution of (21) into (26) gives (23a), through 
(25a) and (25e). 

Similarly, it can be proven that 

(mivi~(r,) div Jo(r2)) = (u*(r,) Ji~(ra)) (28) 

<u*(rl) div ao(r~)> = (u*(r2)div ao(r~)) (29) 

These equations lead, respectively, to 

lio(r,, r2) = (8/8x2 ~) ffo~.(r2, rl) (30) 

(8/Sx~)(8/Sx2 ~) ~ , = /oo(r2,r~) (31) t00(r~ r~) (~/~x~)(a/ax~ ~) ~ 

where x~ ~ and x~ ~ are the components of the vectors rx and r2, respectively. 
These complicated relations are a reflection of the fact that only the divergence 
of the heat flux has a physical meaning. The above equations can be integrated 
under the boundary condition that the linear coefficients are independent of 
the shape of the system, and vahish if r~ or r2 is outside the system. Hence 
(23b) and (23c). Though it would be fatuous not to accept this convention, 
it is interesting to note that Onsager's relation itself does not imply (23b) 
or (23c). (1~ 
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6. P H E N O H E N O L O G I C A L  E O U A T I O N  

The local approximation (22) cannot apply to the integral of the form 

= f [hi(r1) l i j(rl ,  r2) nj(r2)/T(rz)] " v~(r2) dr2 (32) Iij 

which appears in (21). Here, the integrand has been multiplied by ni(rl), for 
convenience. The quantity in the square brackets may be regarded as a 
function of R -- (r 1 § r~)/2 and r = r2 -- rl ; this function is to be denoted 
by/(R, r). As r increases,/(R, r) should vanish rapidly; the dependence on R 
is weak. 

The linear coefficient /(R, r) is assumed to be an even function with 
respect to r, which is valid for isotropic system, for example. The integral (32) 
can be written as 

Iij = f / ( r l  -~- �89 r) �9 vj(rl + r) dr (33) 

because R = r~ § �89 and r2 = rl -+- r; with respect to these r, the integrand 
can be expanded. Since the third- and higher-order terms may be neglected, 
this integral reduces to 

I;~ ,J ,  1, vfl(r~) q- (a/axlv) K;f 'O(rz)(a/axfl)  vfl(r0 (34) 

Here, L~- is a tensor of the second rank, 

La~[rij t 1) ~ f F~(rl + �89 r) dr (35) 

and K~j is a tensor of the fourth rank, 

K~f~(r0 ~ �89 f Y ( r l ,  r) x ' x ~ d r  (36) 

where xv and x ~ are the ), and (3 components of the vector r, re- 
pectively. 

By means of the approximations (22) and (34), the linear relation (21) 
reduces to more familiar equations 

q' = --L00 �9 grad In T + ~ Loi " Vi (37) 

nimi(~ri ~- V i �9 grad vi) j- ni(grad F6i)T -~ 2n i m i t o  • vi 

~- - -Lio  " grad In T + ~ Lij �9 vj + ~ Div(Kij : grad vj) 

The reciprocal relations 
obtained from (23) as 

(38) 

between the phenomenological coefficients are 

E~,~ = L~  (39) 

K~ "~ve-'" - -  K~Vs--ji - -  K~ea~ig (40) 
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The symmetric property with respect to the exchange of ), and ~ is irrelevant 
to the microscopic reversibility. 

Equation (38) is a hydrodynamic equation of motion for component i. 
The terms on the right side can be interpreted as the force related to the 
thermal diffusion, frictional forces between the components, and the viscous 
force, respectively. A similar equation has been obtained by Bearman and 
Kirkwood (12) on the basis of the classical kinetic theory. The viscosity term 
of their equation depends not on vj ,  but on the velocity of local center of 
mass: The kinetic theory could give the dependence of the viscosity term on 
v~ ; however, it is an overgeneralized theory for the purpose of knowing what 
the term depends on. 

The customary equation for diffusion holds true only in the case where 
the inertial and the viscosity terms may be neglected. The reason why the 
previous theory of irreversible processes failed to obtain the inertial term is 
that the set of state variables was incomplete: The velocity of the local center 
of mass was substituted for the velocities of the individual components. 
The omission of the viscosity term is due to the local approximation, and to 
the careless application of the so-called Curie theorem that vectorial 
phenomena are not coupled with tensorial forces in isotropic systems. For 
a solute in aqueous solutions, the inertial and viscous terms of (38) are 
generally small; (13~ in high-temperature plasmas, however, the inertial term is 
even more important than the friction term which governs the diffusion. 

Apart from the relations (39) and (40), some restrictions are imposed on 
the linear coefficients. The summation of the both sides of (38) over the com- 
ponents gives 

~( 2 nimivl)/~t -~ Div ~ nimivig i @ 2to • ~ nimiv i -~ grad P - -  F 

= - Z  L~o" grad In T + Z ~ L~j" vj + Z Z Div(K~j : grad v~) (41) 

where P is the pressure, F is the sum of all the conservative forces, and use has 
been made of the formula 

hi(grad/2i)r = grad P -- F (42) 

The left side of (41) vanishes after the integration over the whole system, 
because it represents the equation of motion for the center of mass of the 
system. This means that the integral of the right side also vanishes; the last 
term does not contribute to the integral. Since grad In T and v~ are arbitrary, 
their coefficients must vanish: that is, 

2 Lio = 2 Loi = 0 (43) 

2 Lij = 2 L~i : 0 (44) 
i i 
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where (39) has been applied. In isotropic systems, the fourth-rank tensor Kit 
has only two independent components corresponding to the shear and bulk 
viscosities, because the linear coefficients l (r l ,  r) of (36) can be written as 

l ~ = 1'3~ + l"x~x ~ (45) 

where l' and l" are scalars. 
If all the flow velocities are the same, or if no diffusion occurs, (41) 

reduces to the Navier-Stokes equation 

( •  nimi)(;r + v" grad v) 

= 2 ( 2  nimi) v • ~ -- grad P + F + Div(K : grad v) (46) 

where v is the velocity of local center of mass, and K is the viscosity coefficient 
given by 

K = y" Z KiJ (47) 

In customary theories, on the contrary, (46) is assumed at the beginning in 
order to obtain an equation for the internal energy density; in this connection, 
it is necessary to substitute v for vi. It should be mentioned in conclusion that 
the imprudent use of the internal energy density necessitated such a 
superfluous assumption, which caused the defects in the customary theory. 

A P P E N D I X .  E Q U I L I B R I U H  C O N D I T I O N  

The entropy S of the whole system is a functional of the state variables 
u*(r), hi(r), and v~(r), which are not independent of  each other. The variables 
satisfy the equations for conservation of 

energy 

particle number 

momentum 

angular momentum 

f u*(r) dr = U* 

f hi(r) dr = Ni 

2 f mini(r) vi(r) dr = P 

2 f (r -- ro) • mini(r) vi(r) dr = M 

where the right sides are all constant, and r 0 is the center of mass of the system: 
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Under these restrictions, the first functional derivatives of S at equilibrium 
vanish. 

Lagrange's multiplier method gives the equilibrium conditions as 
follows: 

~S/~u* = ( l / T ) -  (1/To) = 0 

~S/~n~ = - - ( m * / T )  + ;~ + (m~v~ �9 Vo/To) + {m~v~ �9 [to • (r - -  ro)]/To} 

+[m o • P 

3S/~vi = - -min i{ (v i /T)  --  (vo/To) -- [to x (r -- ro)/To]} = 0 

which lead to (16a)-(16c). Here, l / T o ,  Ai, vo/To, and to/To are the Lagrange 
multipliers, and use has been made of the formula 

~ro/~ni = mi(r  --  ro)/~ rnjNj 

The multipliers have the following meanings: T o is the equilibrium 
temperature; Vo and to are respectively the velocity and the angular velocity 
of the system as a whole; and ~To  § �89 z is the equilibrium value of the 
electrochemical potential at the center of mass. From the continuity equation 
(15) there follows/'o = %. 

Equilibrium thermodynamics gives the entropy s~ per particle in the form 

si = ~ i / 3 T  

where/x~ is regarded as a function of the pressure, temperature, and particle 
densities. From this equation and the differentiation of both sides of 
~S/~ni = 0 with respect to the equilibrium temperature, and the position 
or the time, it follows that 

grad si = 0 and -~i -- 0 

Since X0 and Ji vanish at equilibrium, (11) reduces to 

~ =  --div(q'T-1 + ~ n # i s ~ )  

which gives, by virtue of s = ~ n~s~, 

div q' ---- 0 

As mentioned in Section 2, the divergence-free part of the heat flux has no 
physical effect. Therefore, the heat flux itself at equilibrium may be taken 
to vanish. Notwithstanding this, the heat flux q based on the first law may 
not vanish. 
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